2891 independent reflections

 $R_{\rm int} = 0.029$

2669 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4aS,6cS)-8-Hydroxy-9-isopropyl-4,4,6ctrimethyl-1,2,3,4,4a,5,6,6c-octahydrophenanthren-3-one

Abdellah Zeroual,^a Noureddine Mazoir,^a Celia M. Maya,^b Moha Berraho,^c* Aziz Auhmani^a and Ahmed Benharref^a

^aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences Semlalia, BP 2390, Boulevard My Abdellah, 40000 Marrakech, Morocco, ^bInstituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28002 Madrid, Spain, and ^cLaboratoire de Chimie de Coordination, Unité Matériaux, Faculté des Sciences Semlalia, BP 2390 Boulevard My Abdellah, 40000 Marrakech, Morocco

Correspondence e-mail: mberraho@yahoo.fr

Received 26 April 2007; accepted 5 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 15.5.

The title compound, $C_{20}H_{28}O_2$, is a diterpenoid isolated from the wood of the *Tetraclinis articulata* plant. The molecule contains three fused rings which exhibit different conformations. The non-aromatic oxo-substituted ring has a chair conformation, while the central ring has an envelope conformation. The crystal structure is stabilized by O– $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Abbas *et al.* (2006); Atta-ur-Rahman & Choudary (1999); Azucena & Mobashery (2001); Cremer & Pople (1975); He *et al.* (1999); Panter *et al.* (2002); Ulusu *et al.* (2002).

Experimental

Crystal data

$C_{20}H_{28}O_2$	V = 1698.94 (12) Å ³
$M_r = 300.42$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 7.5554 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 13.3987 (6) Å	T = 298 (2) K
c = 16.7825 (6) Å	$0.5 \times 0.4 \times 0.3 \ \text{mm}$

Data collection

Bruker X8 APEX CCD areadetector diffractometer Absorption correction: none 26366 measured reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.038 & 187 \text{ parameters} \\ wR(F^2) = 0.105 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.51 \text{ e} \text{ Å}^{-3} \\ 2891 \text{ reflections} & \Delta\rho_{\min} = -0.39 \text{ e} \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1\!-\!H1\!\cdots\!O2^i$	0.82	2.02	2.7969 (13)	158
Symmetry code: (i)	$-x, y - \frac{1}{2}, -z +$	- 1/2.		

Data collection: *APEX-W2K-NT* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia,1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Professor J. C. Daran for fruitful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2021).

References

- Abbas, Y., Ducousso, M., Abourouh, M. & Duponnois, R. (2006). Ann. For. Sci. 63, 285–291.
- Atta-ur-Rahman & Choudary, M. I. (1999). Nat. Prod. Rep. 16, 619-635.
- Azucena, E. & Mobashery, S. (2001). Drug Resist. Updat. 4, 106-117.
- Bruker (2004). APEX-W2K-NT (Version 1.0) and SAINT-Plus (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- He, W., Gavai, A., Huang, F.-C., Regan, J., Hanney, B., Poli, G., Bruno, J., Chan, W. K., Djuric, S. W., Yu, K.-T. & Zilberstein, A. (1999). *Bioorg. Med. Chem. Lett.* 9, 469–474.
- Panter, K. E., Manners, G. D., Stegelmeier, B. L., Gardner, D. R., Ralphs, M. H., Pfister, J. A. & James, L. F. (2002). *Biochem. Syst. Ecol.* **30**, 113–118.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Ulusu, N. N., Ercil, D., Sakar, M. K. & Tezcan, E. F. (2002). Phytother. Res. 16, 88–90.

supplementary materials

Acta Cryst. (2007). E63, o2915 [doi:10.1107/S1600536807022258]

(4aS,6cS)-8-Hydroxy-9-isopropyl-4,4,6c-trimethyl-1,2,3,4,4a,5,6,6c-octahydrophenanthren-3-one

A. Zeroual, N. Mazoir, C. M. Maya, M. Berraho, A. Auhmani and A. Benharref

Comment

Diterpenoids producing by plants exhibit well known pharmacological activities (Atta-ur-Rahman & Choudary, 1999; Panter *et al.*, 2002; Azucena & Mobashery, 2001; He *et al.*, 1999; Ulusu *et al.*, 2002). In order to isolate similar compounds, we have undertaken this work. Thus, hexane extraction of wood from the Tetraclinis articulata plant (Abbas *et al.*, 2006), followed by chromatography on a silica gel column, gave the diterpene compound (I) as the sole product in good yield.

The molecule (I) is composed of three fused six-membered rings. The non aromatic six membered ring C4a/C6C/C1/ C2/C3/C4 has a chair conformation, as indicated by the total puckering amplitude QT = 0.48 (2)Å and spherical polar angle $\theta = 167.65$ (1)° with $\varphi = 163.52$ (2)°. The six membered ring C5/C6/C6a/C6b/C6c/C4a displays an envelope conformation with QT = 0.54 (1) Å, $\theta = 52.01$ (1)° (Cremer & Pople, 1975). Molecules are linked by intermolecular O—H···O hydrogen bonds (Table 1, Figure 2) involving the carbonyl and the hydroxyl groups. The hydrogen bonds system results in the formation of chains parallel to the *b* axis.

Experimental

The first study was undertaken on a hexane extract. Subsequent studies were carried out by continuous hexane extraction of thuya wood with a soxhlet apparatus, over a 48 h period. The residue obtained, after evaporation of hexane, was chromatographed on a silica gel column with hexane–ethyl acetate (96:4 ν/ν) as the eluant. This allowed the isolation of compound (I) in 85% yield, as the sole product. Suitable crystals of compound (I) were obtained by evaporation of a dichloromethane solution; m.p. 464–465 K. Spectroscopic analysis: ¹H NMR (300 MHz, CDCl₃, δ , p.p.m.): 6.55 (H-7,s), 6.80 (H-10, s), 5.20 (OH, s), 1.28 (H-12, d, J = 10 Hz), 1.29 (H-13, d, J = 10 Hz), 1.15 (H-14, s), 1.12 (H-15, s), 1.13 (H-16, s); ¹³ C NMR (75 MHz, CDCl₃, δ , p.p.m.): 34.6 (C1), 37.6 (C2), 218.2 (C3), 47.6 (C4), 50.8 (C4a), 20.4 (C5), 29.3 (C6), 128.4 (C6a), 145.5 (C6b), 34.8 (C6c), 111.9 (C7), 151.7 (C8), 132.9 (C9), 126.8 (C10), 22.5 (C11), 24.6 (C12), 24.7 (C13), 26.7 (C14), 21.0 (C15), 21.3 (C16).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96Å (methyl), 0.97 Å (methylene), 0.98Å (methine) and O—H= 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(aromatic, methylene, methine and OH)$ or $U_{iso}(H) = 1.5U_{eq}(methyl)$. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined. The Friedel pairs were merged and any references to the Flack parameter was removed. **Figures**

Fig. 1. Molecular structure of compound I, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radii.

Fig. 2. Partial packing diagram, showing the O—H···O interactions (dashed lines) and the formation of a chain parallel to the *b* axis. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x, y - 1/2, 1/2 - z.]

(4a\$,6c\$)-8-Hydroxy-9-isopropyl-4,4,6c-trimethyl-1,2,3,4,4a,5,6,6c- octahydrophenanthren-3-one

Crystal data	
$C_{20}H_{28}O_2$	$F_{000} = 656$
$M_r = 300.42$	$D_{\rm x} = 1.175 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 7546 reflections
a = 7.5554 (3) Å	$\theta = 2.9 - 30.5^{\circ}$
b = 13.3987 (6) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 16.7825 (6) Å	T = 298 (2) K
$V = 1698.94 (12) \text{ Å}^3$	Prism, colourless
Z = 4	$0.5 \times 0.4 \times 0.3 \text{ mm}$

Data collection

Bruker X8 APEX CCD area-detector diffractometer	2669 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.029$
Monochromator: graphite	$\theta_{\text{max}} = 30.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.0^{\circ}$
ϕ and ω scans	$h = -10 \rightarrow 10$
Absorption correction: none	$k = -18 \rightarrow 19$
26366 measured reflections	$l = -21 \rightarrow 23$
2891 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2 + 0.4523P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.038$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.105$	$\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$

S = 1.07

 $\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$

2891 reflections

Extinction correction: none

187 parameters

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

											· 7	
Fractional	atomic	coordinates	and is	otropic	c or ea	auivalent	isotron	oic dis	placement	narameters ((\check{A}^2))
						1	·~ • · • • •			p	/	

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.0911 (2)	0.63566 (12)	0.27798 (10)	0.023
H13A	0.0367	0.6657	0.2315	0.028*
H13B	0.0788	0.5639	0.2731	0.028*
C2	-0.0064 (2)	0.66929 (13)	0.35037 (12)	0.030
H18A	0.0365	0.6321	0.3961	0.037*
H18B	-0.1310	0.6539	0.3439	0.037*
C3	0.0129 (2)	0.77835 (11)	0.36676 (9)	0.0193 (3)
C4	0.1986 (2)	0.82219 (11)	0.36287 (9)	0.0176 (3)
C4A	0.3067 (2)	0.77609 (10)	0.29306 (8)	0.0145 (2)
H2	0.2598	0.8076	0.2448	0.017*
C5	0.5023 (2)	0.80471 (11)	0.29528 (9)	0.0202 (3)
H12A	0.5135	0.8749	0.3084	0.024*
H12B	0.5619	0.7665	0.3364	0.024*
C6	0.5902 (2)	0.78463 (11)	0.21496 (9)	0.0201 (3)
H9A	0.5797	0.8441	0.1824	0.024*
H9B	0.7153	0.7727	0.2238	0.024*
C6A	0.5147 (2)	0.69726 (10)	0.16901 (8)	0.0154 (3)
C6B	0.37190 (19)	0.64076 (10)	0.19642 (8)	0.0146 (2)
C6C	0.28920 (19)	0.66197 (10)	0.27846 (9)	0.0153 (3)
C7	0.3095 (2)	0.56252 (10)	0.14895 (8)	0.0160 (3)
H5	0.2158	0.5236	0.1671	0.019*
C8	0.3845 (2)	0.54175 (10)	0.07531 (8)	0.0168 (3)
С9	0.5259 (2)	0.59822 (10)	0.04603 (8)	0.0168 (3)
C10	0.5878 (2)	0.67493 (11)	0.09440 (8)	0.0173 (3)
H7	0.6823	0.7132	0.0764	0.021*
C11	0.6034 (2)	0.57533 (11)	-0.03525 (9)	0.0221 (3)
H17	0.6046	0.5026	-0.0413	0.026*
C12	0.4833 (3)	0.61746 (14)	-0.10046 (9)	0.0291 (4)
H15A	0.5331	0.6027	-0.1518	0.044*
H15B	0.4733	0.6884	-0.0942	0.044*
H15C	0.3681	0.5876	-0.0964	0.044*
C13	0.7933 (3)	0.61207 (15)	-0.04667 (11)	0.0322 (4)
H20A	0.8333	0.5949	-0.0992	0.048*
H20B	0.8687	0.5812	-0.0078	0.048*
H20C	0.7970	0.6832	-0.0402	0.048*
C14	0.3857 (3)	0.59435 (12)	0.33870 (9)	0.0249 (3)
H16A	0.3380	0.6052	0.3910	0.037*

supplementary materials

H16B	0.5097	0.6100	0.3387	0.037*
H16C	0.3694	0.5257	0.3239	0.037*
C15	0.2800 (2)	0.80433 (13)	0.44633 (9)	0.0261 (3)
H19A	0.3979	0.8309	0.4477	0.039*
H19B	0.2835	0.7340	0.4571	0.039*
H19C	0.2089	0.8370	0.4859	0.039*
C16	0.1831 (2)	0.93550 (12)	0.34921 (10)	0.0246 (3)
H14A	0.2993	0.9643	0.3465	0.037*
H14B	0.1186	0.9651	0.3925	0.037*
H14C	0.1217	0.9478	0.3001	0.037*
01	0.32359 (17)	0.46427 (8)	0.02913 (7)	0.0228 (2)
H1	0.2418	0.4362	0.0521	0.034*
O2	-0.11497 (17)	0.82758 (9)	0.38691 (7)	0.0265 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.022	0.021	0.028	-0.006	0.008	-0.009
C2	0.021	0.023	0.047	-0.003	0.011	-0.009
C3	0.0204 (7)	0.0205 (6)	0.0170 (6)	0.0031 (6)	0.0006 (5)	-0.0014 (5)
C4	0.0194 (7)	0.0163 (6)	0.0170 (6)	0.0027 (5)	-0.0025 (5)	-0.0032 (5)
C4A	0.0157 (6)	0.0122 (5)	0.0155 (6)	0.0006 (5)	-0.0019 (5)	-0.0009 (4)
C5	0.0179 (7)	0.0196 (6)	0.0232 (7)	-0.0041 (5)	-0.0015 (6)	-0.0038 (5)
C6	0.0193 (7)	0.0180 (6)	0.0229 (6)	-0.0058 (5)	0.0011 (6)	-0.0005 (5)
C6A	0.0149 (6)	0.0126 (5)	0.0188 (6)	-0.0012 (5)	0.0002 (5)	0.0010 (4)
C6B	0.0146 (6)	0.0122 (5)	0.0170 (6)	0.0001 (5)	0.0009 (5)	0.0009 (4)
C6C	0.0159 (7)	0.0119 (5)	0.0180 (6)	0.0000 (5)	0.0022 (5)	0.0000 (5)
C7	0.0173 (6)	0.0129 (5)	0.0178 (6)	-0.0024 (5)	0.0024 (5)	0.0003 (5)
C8	0.0199 (7)	0.0127 (6)	0.0179 (6)	0.0004 (5)	0.0013 (5)	-0.0004 (5)
C9	0.0191 (7)	0.0140 (6)	0.0174 (6)	0.0011 (5)	0.0032 (5)	0.0019 (5)
C10	0.0170 (7)	0.0144 (6)	0.0207 (6)	-0.0016 (5)	0.0027 (5)	0.0033 (5)
C11	0.0278 (8)	0.0174 (6)	0.0210 (6)	0.0004 (6)	0.0088 (6)	0.0011 (5)
C12	0.0381 (10)	0.0311 (8)	0.0180 (6)	-0.0031 (8)	0.0024 (7)	0.0009 (6)
C13	0.0291 (9)	0.0392 (9)	0.0283 (8)	-0.0005 (8)	0.0124 (7)	0.0037 (7)
C14	0.0356 (9)	0.0185 (7)	0.0206 (6)	0.0084 (7)	0.0030 (7)	0.0043 (5)
C15	0.0298 (9)	0.0322 (8)	0.0162 (6)	0.0053 (7)	-0.0048 (6)	-0.0047 (6)
C16	0.0261 (8)	0.0167 (6)	0.0309 (8)	0.0028 (6)	-0.0039 (7)	-0.0066 (6)
01	0.0295 (6)	0.0186 (5)	0.0202 (5)	-0.0076 (5)	0.0060 (5)	-0.0047 (4)
02	0.0216 (6)	0.0288 (6)	0.0291 (6)	0.0078 (5)	0.0021 (5)	-0.0042 (5)

Geometric pa	rameters ((Å,	°)
--------------	------------	-----	----

C1—C2	1.490 (2)	C7—C8	1.3877 (19)
C1—C6C	1.538 (2)	С7—Н5	0.9300
C1—H13A	0.9700	C8—O1	1.3748 (17)
C1—H13B	0.9700	C8—C9	1.398 (2)
C2—C3	1.494 (2)	C9—C10	1.391 (2)
C2—H18A	0.9700	C9—C11	1.516 (2)
C2—H18B	0.9700	С10—Н7	0.9300

C3—O2	1.2177 (19)	C11—C13	1.529 (2)
C3—C4	1.522 (2)	C11—C12	1.530 (2)
C4—C16	1.540 (2)	С11—Н17	0.9800
C4—C15	1.548 (2)	C12—H15A	0.9600
C4—C4A	1.556 (2)	C12—H15B	0.9600
C4A—C5	1.527 (2)	С12—Н15С	0.9600
C4A—C6C	1.5541 (19)	C13—H20A	0.9600
C4A—H2	0.9800	C13—H20B	0.9600
C5—C6	1.526 (2)	C13—H20C	0.9600
C5—H12A	0.9700	C14—H16A	0.9600
C5—H12B	0.9700	C14—H16B	0.9600
C6—C6A	1.513 (2)	C14—H16C	0.9600
С6—Н9А	0.9700	C15—H19A	0.9600
С6—Н9В	0.9700	C15—H19B	0.9600
C6A—C6B	1.396 (2)	С15—Н19С	0.9600
C6A—C10	1.401 (2)	C16—H14A	0.9600
C6B—C7	1.3986 (19)	C16—H14B	0.9600
C6B—C6C	1.5384 (19)	C16—H14C	0.9600
C6C—C14	1.541 (2)	O1—H1	0.8200
C2—C1—C6C	114.05 (14)	C14—C6C—C4A	115.77 (12)
C2—C1—H13A	108.7	C8—C7—C6B	121.33 (13)
C6C-C1-H13A	108.7	С8—С7—Н5	119.3
C2—C1—H13B	108.7	С6В—С7—Н5	119.3
С6С—С1—Н13В	108.7	O1—C8—C7	121.11 (13)
H13A—C1—H13B	107.6	O1—C8—C9	117.79 (13)
C1—C2—C3	113.42 (15)	C7—C8—C9	121.10 (13)
C1—C2—H18A	108.9	C10—C9—C8	116.86 (13)
C3—C2—H18A	108.9	C10-C9-C11	123.02 (13)
C1—C2—H18B	108.9	C8—C9—C11	120.12 (13)
C3—C2—H18B	108.9	C9—C10—C6A	123.15 (13)
H18A—C2—H18B	107.7	С9—С10—Н7	118.4
O2—C3—C2	120.23 (16)	С6А—С10—Н7	118.4
O2—C3—C4	122.28 (13)	C9—C11—C13	114.20 (14)
C2—C3—C4	117.35 (14)	C9—C11—C12	109.89 (13)
C3—C4—C16	108.46 (13)	C13—C11—C12	110.37 (13)
C3—C4—C15	105.51 (13)	С9—С11—Н17	107.4
C16—C4—C15	108.51 (13)	C13—C11—H17	107.4
C3—C4—C4A	111.28 (11)	C12—C11—H17	107.4
C16—C4—C4A	108.62 (13)	C11—C12—H15A	109.5
C15—C4—C4A	114.28 (12)	C11—C12—H15B	109.5
C5—C4A—C6C	109.47 (12)	H15A—C12—H15B	109.5
C5—C4A—C4	112.95 (12)	C11—C12—H15C	109.5
C6C—C4A—C4	117.68 (12)	H15A—C12—H15C	109.5
C5—C4A—H2	105.2	H15B—C12—H15C	109.5
C6C—C4A—H2	105.2	C11—C13—H20A	109.5
C4—C4A—H2	105.2	С11—С13—Н20В	109.5
C6—C5—C4A	110.79 (12)	H20A—C13—H20B	109.5
C6—C5—H12A	109.5	C11—C13—H20C	109.5
C4A—C5—H12A	109.5	H20A—C13—H20C	109.5

supplementary materials

C6 C5 1112D	100.5	1120D C12 1120C	100.5
C6C5H12B	109.5	H20B—C13—H20C	109.5
C4A—C5—H12B	109.5	C6C—C14—H16A	109.5
H12A—C5—H12B	108.1	C6C—C14—H16B	109.5
C6A—C6—C5	115.00 (12)	H16A—C14—H16B	109.5
С6А—С6—Н9А	108.5	C6C—C14—H16C	109.5
С5—С6—Н9А	108.5	H16A—C14—H16C	109.5
С6А—С6—Н9В	108.5	H16B—C14—H16C	109.5
С5—С6—Н9В	108.5	C4—C15—H19A	109.5
H9A—C6—H9B	107.5	С4—С15—Н19В	109.5
C6B—C6A—C10	118.92 (13)	H19A—C15—H19B	109.5
C6B—C6A—C6	122.87 (13)	C4—C15—H19C	109.5
C10—C6A—C6	118.17 (13)	H19A—C15—H19C	109.5
C6A—C6B—C7	118.64 (13)	H19B—C15—H19C	109.5
C6A—C6B—C6C	120.57 (12)	C4—C16—H14A	109.5
C7—C6B—C6C	120.76 (12)	C4—C16—H14B	109.5
C1—C6C—C6B	110.39 (12)	H14A—C16—H14B	109.5
C1—C6C—C14	109.21 (13)	C4—C16—H14C	109.5
C6B—C6C—C14	106.64 (12)	H14A—C16—H14C	109.5
C1—C6C—C4A	108.02 (12)	H14B—C16—H14C	109.5
C6B—C6C—C4A	106.76 (11)	C8—O1—H1	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1…O2 ⁱ	0.82	2.02	2.7969 (13)	158
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$.				

